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Phylogenetic Networks for the Human mtDNA Haplogroup T

David A. Pike
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Abstract: We develop phylogenetic networks for mtDNA haplogroup T, based on information stored in the
MitoSearch database at www.mitosearch.org. Analysing the structure of the resulting networks, we note that
nucleotide 16296 appears to be unstable throughout the haplogroup. We also observe a cluster that does
not fall within one of the established subgroups of haplogroup T and so we propose some revision to the
haplogroup hierarchy in order to encompass this cluster.

Introduction

The human mitochondrial DNA molecule was first
fully sequenced in 1981 by Anderson et al.; this se-
quence of 16,569 nucleotide base pairs has since be-
come known as the Cambridge Reference Sequence
and is often referred to by the acronym CRS. Nu-
merous subsequent studies have revealed that muta-
tions within the mtDNA genome are an effective tool
with which to delve into aspects of population genet-
ics and human migrations. In this regard, a phylo-
genetic tree of major mtDNA haplogroups has been
developed, whereby each haplogroup is characterised
by a particular set of mutational differences as com-
pared to the CRS. A version of this tree that relies
on coding region mutations appears in a manuscript
by Herrnstadt et al. (2002).

Here we focus our attention on haplogroup
T, which was first described as “group 2B” by
Richards et al. (1996), who observed that the hap-
logroup was characterised by a pair of mutations
(at nucleotide positions 16126 and 16294) within
the first hypervariable region (HVR1) of the noncod-
ing control region of the mtDNA genome. Shortly
afterwards Torroni et al. (1996) associated the hap-
logroup with polymorphic restriction sites within the
coding region, but also observed a correlation with
HVR1 positions 16294 and 16296 (mutations at
16126 were observed in several samples, but were
also lacking in a few others).

Haplogroup T is now generally associated with
a number of polymorphisms, at nucleotide positions
16126 and 16294 within the noncoding region of the
mtDNA genome and the following positions within
the coding region: 709, 1888, 4216, 4917, 8697,
10463, 11251, 13368, 14905, 15452, 15607, and
15928 (Torroni et al. 1996; Macaulay et al. 1999;
Finnila and Majamaa 2001). Additional mutations,
such as those at positions 73 and 16519 are common
within haplogroup T, but are also found in several

other haplogroups (Wilkinson-Herbots et al. 1996;
Helgason et al. 2000).

Our inquiry into the structure of the phyloge-
netic network for haplogroup T stems from the grow-
ing number of individuals who are participating in
genetic genealogy studies and find themselves to be
members of the haplogroup. Searches for informa-
tion about the haplogroup will, with some effort,
reveal that it originated in the Near East approxi-
mately 46,500 years ago but is now most prevalent in
Europe, where it is found to occur in up to
10% of some subpopulations (Richards et al. 1998;
Helgason et al. 2001).

In the overall phylogenetic tree, haplogroup T is
closest to haplogroup J, which is characterised by
the HVR1 motif 16069-16126 (Torroni et al. 1994;
Richards et al. 1996) as well as coding region mu-
tations at 4216, 10398, 11251, 12612, 13708, and
15452 (Torroni et al. 1994; Macaulay et al. 1999;
Finnild and Majamaa 2001). Hence the parent hap-
logroup JT has the motif 4216-11251-15452~
16126, with 16126 being the defining HVR1 muta-
tion. When considering HVR1 mutations, it is there-
fore the additional mutation at 16294 that defines
haplogroup T, whereas haplogroup ] is distinguished
by the mutation at 16069.

The scientific literature also contains a number
of papers from the medical research community,
in which attempts to correlate pathological condi-
tions with haplogroup membership are made. For
instance, a study conducted in Spain observed a
greater rate of occurrence of reduced sperm motility
among men in haplogroup T than was found with
men in other haplogroups (Ruiz-Pesini et al. 2000).
However, a more recent study conducted in Por-
tugal concluded the haplogroup association not to
be sound, and noted that care must be taken
when attempting to draw conclusions about hap-
logroups when considering only a regional sam-
pling of data (Pereira et al. 2005). Elsewhere it has
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been reported that membership in haplogroup T
may offer some protection against Alzheimer Dis-
ease (Chagnon et al. 1999; Herrnstadt et al. 2002)
and also Parkinson’s Disease (Pyle et al. 2005), but
the cautionary words of Pereira et al. suggest that
further studies may be necessary before reaching firm
conclusions.

Searches for information about the haplogroup
will also reveal that Russian Tsar Nicholas II was
a member of haplogroup T, and that he and his
brother, the Grand Duke George Alexandrovitch
Romanov, both exhibited heteroplasmy at nucleotide
position 16169 (Ivanov et al. 1996).

This information, while interesting, may not
satisfy those whose primary interest is genetic
genealogy and who are seeking some sense of place
within the haplogroup. In this paper we construct a
phylogenetic network based on information stored in
the MitoSearch database at www.mitosearch.org, a
public database designed to assist in the pursuit of
genetic genealogy; individuals can enter their own
mtDNA haplotype into the database in the hope of
making contact with others who share their genetic
signature (i.e., with potential relatives who share
maternal kinship). In particular, we extract the data
pertaining to haplogroup T and then construct a map
based on this data set, so that individuals may deter-
mine their place within the haplogroup T family.

Subsequent to building phylogenetic networks, we
conduct some analysis of the haplogroup and its sub-
groups. In so doing, we propose a revision to the hap-
logroup T subgroup hierarchy.

Methodology

The source for the data we use is, as men-
tioned above, the MitoSearch database found at
www.mitosearch.org. For each sample, it contains
the results of genetic analysis of the nucleotides in
the interval 16001 to 16569, which encompasses the
first hypervariable region (HVR1). Several of the
database entries also report the results of genetic
analysis for nucleotide positions 1 to 574 (this
interval includes HVR2).

As of November 15, 2005, the MitoSearch
database contained a total of 367 samples that had
been classified as belonging to haplogroup T or one
of its subgroups. As the majority of these samples
had only been tested for mutations within the in-
terval 16001 to 16569, we chose to limit our con-
sideration to this interval alone. Alternatively, we
could have opted to work with the minority of sam-
ples that had been fully tested for both HVR1 and
HVR2, but such a choice would have been contrary to
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our motivational goal of presenting a map that could
be consulted by genetic genealogists, many of whom
only have information for the HVR1 portion of their
mtDNA genome.

The MitoSearch database does not store informa-
tion pertaining to the coding region of the mtDNA
genome. Not having coding region data and not
utilising HVR2 data may partially inhibit our abil-
ity to construct phylogenetic networks in the sense
that it is possible that some genetic branching may
not be observed if its only evidence is located among
mutations in these regions. Fortunately the part
of the human mtDNA molecule that we are using
(the HVR1 portion) is known to have the highest
rate of variation of any part of the mtDNA genome
(Greenberg et al. 1983; Kocher and Wilson 1991).

To date, five major subgroups of haplogroup
T have been identified, and each is associ-
ated with a particular set of HVR1 muta-
tions (Richards et al. 1998; Richards et al. 2000).
These motifs, which are in addition to the HVR1
motif 16126-16294 that defines haplogroup T, are
listed in Table 1.

| Subgroup [ Associated HVR1 Mutations |

T1 16163-16186-16189
T2 16304
T3 16292
T4 16324
TS 16153

Table 1: Mutation Positions and Subgroups

The MitoSearch database allows for samples to be
identified with subgroups and so the 367 haplogroup
T samples have been partitioned into seven disjoint
subsets (T'1 to TS5, as well as two others named T and
T*); the number of samples in each subset is shown
in Table 2.

Subgroup || T | T* | T1 | T2 | T3 | T4 | TS
Samples 47 161 | 76 | 144 | 17 | 7 | 15

Table 2: Samples in the MitoSearch database

As the intent of the T and T* subsets is perhaps less
apparent than for subsets T1 through TS5, a short
review of haplogroup nomenclature may be useful:
Richards et al. (1998) proposed that the star desig-
nation (e.g. T*) should be used for each sample that
belongs to a haplogroup (e.g. T) but not one of its
known subgroups (e.g. not to any of T1 through
TS5). However, a growing number of genetic geneal-
ogists are having their DNA analysed (for instance,
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through participation in the Genographic Project)
and are being informed that their haplogroup is
simply T, rather than a more refined classifica-
tion (such as T* or one of T1 through TS5) even
if there is evidence to suggest that a particular
subgroup applies. Hence the 47 samples in the
T subset may permit a more specific classifica-
tion than their position in the MitoSearch database
suggests.  Considering also that the MitoSearch
database allows individuals to specify their hap-
logroup during the data entry process, we can-
not assume that the seven data sets contain only
samples that are correctly assigned to them. Given
these concerns, we process all 367 samples as a
single data set and we use the diagnostic motifs
listed in Table 1 to determine each sample’s subgroup
classification.

To comment on the fitness of the 367 samples,
nine of them lacked the combination 16126-16294
that classifies haplogroup T. Of these nine, six were
identical to the CRS and have likely been mis-entered
into the MitoSearch database (either as belonging to
haplogroup T or else as having no differences with
respect to the CRS) and so we removed these six
samples from the data set. One of the other three
exceptional samples has the sequence 16294-16304—
16519; it appears to have experienced a back-
mutation at nucleotide 16126, but otherwise it be-
longs to subgroup T2. The remaining two other
cases share the same set of mutations (16126-16292—
16296-16304-16311-16519) and so appear to have
had a back-mutation at nucleotide 16294. However,
assignment of these two samples to a subgroup would
seem to be problematic, given that they possess the
motifs for both the T2 and the T3 subgroups.

The number of distinct haplotypes that are repre-
sented by the the 361 samples remaining in our data
setis 121. Overall the three most frequent haplotypes
occur 83, 52, and 20 times and collectively account
for 42.9% of the data set.

In the network diagrams that we now describe,
each node represents a distinct haplotype, with the
size of each node representing the corresponding
number of samples. However, node sizes are not
linear; rather a logarithmic scale is used for the radii,
meaning that the largest nodes represent dominant
haplotypes. When a node represents more than a
single sample, the node’s label begins with the num-
ber of samples that share the haplotype, with this
number being enclosed in curly braces { and }. This
enumeration is omitted if the node represents only
one sample. The remainder of each node’s label con-
sists of the haplotype for the node. Here we use the
format adopted by MitoSearch. Since each nucleotide

under consideration has a position in the 16000s, the
leading 16 is omitted, so that positions are reported
as one of 001, 002, 003, etc. If a position is followed
by the symbol —, then the mutation at that position
is a nucleotide deletion. If a letter (one of A, C, G, or
T) follows the position, then the mutation is a poly-
morphism. Insertions are represented in the format
XXX.yz, meaning that nucleotide z (one of A, C, G, or
T) appears in the yth position after nucleotide 16xxXx.

Whenever two nodes represent haplotypes that
differ by a single mutation, they have been joined
by an edge that is labelled with the position of the
mutation (again, dropping the leading 16).

When the overall network was initially mapped, it
was found that 32 of the 121 nodes were isolated and
not adjacent to any other nodes, meaning that they
represented haplotypes that were at least two muta-
tional differences away from any other haplotype in
the data set. For these isolated nodes, we checked to
see if there were any nodes whose haplotypes were
two mutational differences away; whenever this was
found to be true we added a dotted edge between the
pair of nodes. In this manner, 28 of the 32 originally
isolated nodes were able to be placed into a context
in the network diagram, in the sense that the dotted
edges join nodes that would be close to each other
if the intermediate haplotypes had not been absent
from our sample data set. We similarly added a dot-
ted edge between the nodes representing the haplo-
types 16126-16182-16183-16189-16294-16296-
16298-16519 and 16126-16183-16189-16294—
16296-16519, so that the cluster centred at the for-
mer node could be suitably placed in the network
diagram.

Each node is individually coloured to indicate
the subgroup to which the corresponding haplotype
belongs. For the purpose of determining which colour
to use for a given node, we adopted a few simple
conventions. In this regard, we first considered
whether any of the single mutations that are asso-
ciated with subgroups T2 through TS5 were present,
and if so, assigned the haplotype to the corresponding
subgroup. However, if the sample met the criteria for
more than one of these subgroups, then we arbitrarily
gave precedence to the subgroup with the higher num-
bered diagnostic mutation (so, in essence, T4’s 16324
would override T2’s 16304, which would override
T3’ 16292, which would override TS5’ 16153). In
practice, only four samples exhibited such ambiguity:
the two already mentioned (and which we assigned to
subgroup T2), one with the sequence 16126-16292—
16294-16296-16304-16519 that was also assigned
to subgroup T2, and one other with the sequence
16126-16292-16294-16296-16324-16519 that we
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assigned to subgroup T4.

We also counted the number of mutations that
each sample shared with the T1 diagnostic motif
16163-16186-16189. Whenever a haplotype had
mutations in at least two of these three positions, we
classified it as T1 and coloured its node accordingly.
None of the samples with at least two of these three
mutations also had mutations associated with sub-
groups T2 through TS5, so we did not have to deal
with potentially ambiguous situations with respect to
T1.

Each sample not classified by these guidelines as
belonging to one of the subgroups T1 through T5 was
left unassigned and appears in the “Other” category
in the network diagrams.

Analysis and Discussion

The overall phylogenetic network, based on the 361
samples and the corresponding 121 haplotypes is
shown in Figure 1. Each node and solid edge has
been labelled, but even with a small font the labels
may detract from the overall presentation. Hence
in Figure 2 we present the corresponding unlabelled
network diagram. The node representing the hap-
lotype 16126-16294-16519 has been drawn with a
double circle to emphasise that it is the point at which
the network connects to the greater human mtDNA
phylogenetic network.

There are several obvious features of the phyloge-
netic network for the haplogroup. One of the most
apparent is that subgroups T1 and T2 dominate the
haplogroup (or, perhaps more accurately, they dom-
inate the MitoSearch data set). Subgroups T1 and
T4 take the form of star-like clusters, whereas T2,
T3, and TS5 do not exhibit the pattern of a dominant
central node with lesser nodes radiating out from it.

As previously noted, the network contains four
isolated nodes, indicating that their haplotypes are
at least three mutational differences away from any
other sample in our data set. These four nodes
appear in Figure 1 with one in each of the subgroups
T1,T2,T3,and TS. Those in T1 and T2 appear as if
they may have suffered from data entry errors. Specif-
ically, the isolated T1 node has a 16163C mutation,
yet all of the remaining T1 samples with a mutation at
16163 have the mutation 16163G. The situation with
the T2 sample is even more apparent, as it consists
of the mutations 16126T, 16241A, 16294C, 16304T,
and 16519T, none of which represents a difference
when compared to the CRS; likely 16126C, 16294T,
16304C, 16519C and something other than an A at
16241 were intended. The two other isolated nodes,
in subgroups T3 and TS5, show no obvious signs of
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inconsistency and may simply represent haplotypes
for which genetic neighbours were not found in the
MitoSearch database, which may be a reflection of
the relatively small number of samples that belong to
the T3 and T3 subgroups.

Another striking aspect of the network is that
it is not a tree, but instead it contains many
cycles (i.e., reticulations). A closer inspection of the
edges in the network reveals that several of these
cycles contain edges that correspond to mutations at
nucleotide 16296. Moreover, mutations at 16296
account for 13 of the 103 solid edges in the network,
more than double that of any other nucleotide.

There is widespread distribution of mutations at
16296. Of the 361 samples in our data set, 183 of
them possess a mutation at 16296. We also find that
each of the five subgroups contains some haplotypes
that have mutations at 16296 as well as some that
do not. There is a similar combination among the
ungrouped haplotypes.

The situation with nucleotide 16296 appears to
warrant some explanation. Since mutations at 16296
are present in each subgroup, it would almost appear
that it should be included with 16126 and 16294 as a
defining mutation for the T haplogroup. However, its
widespread absence would contradict such an inclu-
sion. A lack of consistency with respect to 16296 was
previously reported by Richards et al. (2000), who
noted that Malyarchuk and Derenko (1999) had sug-
gested that the mutation at 16294 might be an influ-
ential factor for instability at 16296 (and, to a lesser
extent, also at other nearby nucleotide positions).

Another hypothesis, which we now discuss, is
that a situation of heteroplasmy at position 16296
might have developed shortly after the occurrence
of the mutation at 16294 that partially defines
the T haplogroup. If this heteroplasmy persisted
for many generations, beyond the emergence of
the mutations that define the T1 through TS5 sub-
groups, then in some lineages the heteroplasmy may
have transitioned to a state of homoplasmy with a
cytosine nucleotide at 16296 (which matches the CRS
and is therefore not reported as a mutation) while
others may have fixed to a thymine (which we now
detect as a mutation at 16296).

It is interesting to note that a case for persistent
heteroplasmy in human mtDNA has been previously
reported. In particular, persistent heteroplasmy at
nucleotide location 16192 among some members of
mtDNA haplogroup U has been detected, and is sus-
pected to be related to a polymorphism at 16189
(Howell and Smejkal 2000). It is therefore conceiv-
able that a similar mechanism is helping the polymor-
phism at 16294 (which is harboured by members of
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Figure 2: The phylogenetic network (unlabelled)
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haplogroup T) to produce or sustain heteroplasmy at
16296.

The MitoSearch database presently contains no
information about the presence or absence of hetero-
plasmy and therefore offers no further insight into
this question. It would therefore be interesting to
see the results of a study that specifically seeks to
determine if cases of heteroplasmy at location 16296
occur at an unexpectedly high frequency among the
modern-day members of haplogroup T, possibly in-
dicating that 16294 is influencing 16296 or perhaps
indicating that a case of ancient heteroplasmy still
lingers today.

If we assume that there is inherent instability
and/or persistent heteroplasmy at nucleotide 16296
when dealing with haplogroup T, then perhaps the
phylogenetic network illustrated in Figure 1 and
Figure 2 warrants some simplification. Specifically,
we could disregard the presence of mutations at
16296 in our data set (which is an action that we
note was also taken by Richards et al. (2000)), and
then repeat the process of generating the phylogenetic
network. In so doing, we find that the 361 samples
now give rise to 108 distinct haplotypes, the most
common three of which occur 103, 52, and 22 times
(collectively accounting for 49.0% of the data set).
The resulting phylogenetic network is shown with
labels in Figure 3 and without labels in Figure 4.

For the most part, the revised network has good
connectivity and very few cycles, and the subgroups
now exhibit a stronger star-like cluster pattern. That
the subgroups radiate out from the root node 16126—
16294-16519 is to be expected, since this root node
represents the ancestral origin of the haplogroup.

We now turn our attention to a conspicuous
collection of seventeen samples that form their own
star-like cluster, centred at haplotype 16126-16182-
16183-16189-16294-16296-16298-16519.  This
central haplotype is two mutational differences away
from a node representing a single instance of the hap-
lotype 16126-16183-16189-16294-16296-16519.
Were it not for the dotted edge to the latter node, this
small cluster would have appeared orphaned and not
joined to the rest of the network. This group is large
enough and demonstrates a sufficient star-like pattern
to warrant naming. However, before we name this
group we give some thought to the evolution of the
T1 subgroup.

The path from the T root node to the centre of
the T1 cluster begins with an edge that represents a
mutation at 16189. Thus it appears that 16189 was
the first of the three founding HVR1 mutations to
occur in the historical rise of the T1 subgroup. This
hypothesis is further supported by the presence of

16189 in a number of haplotypes (including those
in our nearly orphaned group) which do not also
share one of the other two mutations from the 16163—
16186-16189 T1 motif introduced by Richards et al.
(1998).

Kivisild et al.  (2004) and Palanichamy et al.
(2004) have suggested some revision to the T1 sub-
group, so that the T1 designation would correspond
to the HVR1 motif 16163-16189. Those haplotypes
that also contain a polymorphism at 16186 would be
designated as belonging to a subgroup named T1la,
while those harbouring a mutation at 16243 would
be designated as belonging to a subgroup named T1b.
Given our hypothesis that 16189 was the first of the
T1 mutations to occur, and the accompanying obser-
vation of genetic branching subsequent to the advent
of the 16189 mutation but prior to the development
of either of the 16163 or 16186 mutations, we pro-
pose that the T1 hierarchy be slightly further refined.
In particular we recommend that the T1 designa-
tion should apply to those haplotypes which have the
16189 polymorphism. The supplementary HVR1
motifs for Tla and T1b would therefore be revised
to be 16163-16186 and 16163-16243, respectively.
The cumulative motifs of 16163-16186-16189 and
16163-16189-16243 for T1a and T1b, respectively,
therefore remain unchanged. Incidentally, most of
the T1 nodes in our network diagrams belong to the
T1a subgroup, whereas only two samples from the
MitoSearch data set belong to T1b.

Returning now to our nearly orphaned cluster, we
note that each of its seventeen samples has a mutation
at 16189, which places the cluster within the revised
T1 subgroup. Each haplotype in this cluster also has
mutations at each of 16182, 16183, and 16298. Thus
we now introduce the T1c designation, along with the
supplementary motif 16182-16183-16298.

The new motif specifications for the T1 subgroup
are shown in Table 3 and yield a subgroup hierarchy
that is consistent with the nomenclature standard
outlined by Richards et al. (1998).

| Subgroup [ Associated HVR1 Mutations ‘
T1 16189

Tla 16163-16186-16189
T1b 16163-16189-16243
Tlc 16182-16183-16189-16298

Table 3: Revised HVR1 Motifs for Subgroup T1
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in this document were drawn with the assistance of
Pajek (Batagelj and Mrvar), a software program for
large network analysis. The three anonymous re-
viewers who refereed this paper are also thanked for
several helpful comments. Research support from
NSERC is also acknowledged.

Source Data

The raw data extracted from the MitoSearch
database and used in the construction of the net-
works presented in this paper are available online at
www.jogg.info/21/T-data.txt.
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